Decomposition of a 3D triangular mesh into quadrangulated patches

Roseline Bénière

G. Subsol, G. Gesquière, F. Le Breton and W. Puech

LIRMM, Montpellier, France
C4W, Montpellier, France
LSIS, Arles, France

May $21^{\text {st }}$
GRAPP 2010

Objective

Decompose a triangular mesh into a set of quadrangulated patches.

Objective

Decompose a triangular mesh into a set of quadrangulated patches.
A patch:

- is constituted of quads
- has a rectangular grid structure

Objective

Decompose a triangular mesh into a set of quadrangulated patches.
A patch:

- is constituted of quads
- has a rectangular grid structure

Objective

Decompose a triangular mesh into a set of quadrangulated patches.

A patch:

- is constituted of quads
- has a rectangular grid structure

Motivation

Patches can be used for:

- interpolating or approximating a surface by a continuous representation,
- making reverse engineering to recognize the grid of the control points,
- compressing 3D mesh geometry without describing the topology,
- applying subdivision schemes,
- doing numerical simulation based on finite elements.

Constraints

Assumption: the mesh coordinates are exact \Rightarrow do not change the shape:

Initial mesh

Constraints

Assumption: the mesh coordinates are exact \Rightarrow do not change the shape:

- the vertices must be preserved,
- the edges are derived from the original triangular mesh.

Constraints

Assumption: the mesh coordinates are exact \Rightarrow do not change the shape:

- the vertices must be preserved,
- the edges are derived from the original triangular mesh.

To create patches \Rightarrow last constraint:

Constraints

Assumption: the mesh coordinates are exact \Rightarrow do not change the shape:

- the vertices must be preserved,
- the edges are derived from the original triangular mesh.

To create patches \Rightarrow last constraint:

- the quadrangulated meshes are decomposed into quad rectangular grids.

Initial mesh

都

State of the art: Triangular to quadrangular mesh

Remeshing algorithms

Huang et al.
-
Spectral quadrangulation with orientation and alignment control
ACM trans. Graph. 27(5):1-9 2008

Advancing front algorithms

E Owen et al.

- Advancing front quadrilateral meshing using triangle transformations.
7th International Meshing

Roundtable:409-428 1998.

Merging algorithms

Borouchaki and Frey.
Adaptive Triangular-Quadrilateral Mesh Generation.

International Journal for Numerical Methods in Engineering 1998.

State of the art: Triangular to quadrangular mesh

Remeshing algorithms

Huang et al.
0
Spectral quadrangulation with orientation and alignment control
ACM trans. Graph. 27(5):1-9 2008

Advancing front algorithms

E Owen et al.

- Advancing front quadrilateral meshing using triangle transformations.
7th International Meshing
 Roundtable:409-428 1998.

Merging algorithms

Borouchaki and Frey.
Adaptive Triangular-Quadrilateral Mesh Generation.

International Journal for Numerical Methods in Engineering 1998.

State of the art: Quadrangular meshes to patches

Decomposition into patches

Eppstein et al.
O Motorcycle graphs: Canonical mesh partitioning.
Comput. Graph. forum, 27(5):1477-1486 2008.

Outline

(1) Presentation of the Decomposition Method

- Computation of a Quality Coefficient
- Construction of Quadrangulated Areas
- Decomposition into Quadrangulated Patches
(2) Experimental Results
- First Results
- Threshold Variations
- CAD Objects
(3) Conclusion and Future Work
- Conclusion
- Future Work

Our method

3 steps:
(1) Computation of a quality coefficient for each pair of adjacent triangles
(2) Construction of quadrangulated areas, using the quality coefficients
(3) Decomposition into quadrangulated patches from quadrangulated areas

1) Computation of a Quality Coefficient

Computation of the quality coefficient Q based on:

- dihedral angle (ϕ)
- angles between connected edges $\left(\alpha_{i}\right)$

1) Computation of a Quality Coefficient

Computation of the quality coefficient Q based on:

- dihedral angle (ϕ)
- angles between connected edges $\left(\alpha_{i}\right)$

$$
Q= \begin{cases}2 \pi & \text { if } \phi<\phi_{\min } \\ \frac{1}{4} \sum_{i=1}^{4}\left|\frac{\pi}{2}-\alpha_{i}\right| & \text { elsewhere }\end{cases}
$$

1) Computation of a Quality Coefficient

Computation of the quality coefficient Q based on:

- dihedral angle (ϕ)
- angles between connected edges $\left(\alpha_{i}\right)$

$$
Q= \begin{cases}2 \pi & \text { if } \phi<\phi_{\min } \\ \frac{1}{4} \sum_{i=1}^{4}\left|\frac{\pi}{2}-\alpha_{i}\right| & \text { elsewhere }\end{cases}
$$

$$
\text { if } Q \approx 0
$$

1) Computation of a Quality Coefficient

Computation of the quality coefficient Q based on:

- dihedral angle (ϕ)
- angles between connected edges $\left(\alpha_{i}\right)$

$$
Q= \begin{cases}2 \pi & \text { if } \phi<\phi_{\min } \\ \frac{1}{4} \sum_{i=1}^{4}\left|\frac{\pi}{2}-\alpha_{i}\right| & \text { elsewhere. }\end{cases}
$$

if $Q \approx 0 \Rightarrow$ quad \approx planar rectangle

1) Computation of a Quality Coefficient

Computation of the quality coefficient Q based on:

- dihedral angle (ϕ)
- angles between connected edges $\left(\alpha_{i}\right)$

$$
Q= \begin{cases}2 \pi & \text { if } \phi<\phi_{\min } \\ \frac{1}{4} \sum_{i=1}^{4}\left|\frac{\pi}{2}-\alpha_{i}\right| & \text { elsewhere }\end{cases}
$$

if $Q \approx 0 \Rightarrow$ quad \approx planar rectangle \Rightarrow quad with good quality

2) Construction of Quadrangulated Areas

Iterative construction of quadrangulated areas:

Start with the best Q.

2) Construction of Quadrangulated Areas

Iterative construction of quadrangulated areas:
Find the quad with the best Q in the neighborhood

2) Construction of Quadrangulated Areas

Iterative construction of quadrangulated areas:
No new quad can be created.

2) Construction of Quadrangulated Areas

Iterative construction of quadrangulated areas:

Left triangles:

- isolated triangles \qquad
- triangles of quads with $Q>Q_{\max }$

3) Decomposition into Quadrangulated Patches

3.1) The quads are arranged into "rectilinear polygons"

3) Decomposition into Quadrangulated Patches

3.1) The quads are arranged into "rectilinear polygons"

Each quad is labeled with a position using neighbors

3) Decomposition into Quadrangulated Patches

3.1) The quads are arranged into "rectilinear polygons"

Each quad is labeled with a position using neighbors

3) Decomposition into Quadrangulated Patches

3.1) The quads are arranged into "rectilinear polygons"

Each quad is labeled with a position using neighbors

3) Decomposition into Quadrangulated Patches

3.1) The quads are arranged into "rectilinear polygons"

Each quad is labeled with a position using neighbors

	$(0,0)$	

	$(-1,0)$	
$(0,-1)$	$(0,0)$	$(0,1)$
	$(1,0)$	
Step 1		

$(-1,-1)$	$(-1,0)$	$(-1,1)$
$(0,-1)$	$(0,0)$	$(0,1)$
$(1,-1)$	$(1,0)$	$(1,1)$
Step n		

Example:

3) Decomposition into Quadrangulated Patches

3.1) The quads are arranged into "rectilinear polygons"

Each quad is labeled with a position using neighbors

	$(0,0)$	

	$(-1,0)$	
(0,-1)	$(0,0)$	$(0,1)$
	$(1,0)$	

$(-1,-1)$	$(-1,0)$	$(-1,1)$
$(0,-1)$	$(0,0)$	$(0,1)$
$(1,-1)$	$(1,0)$	$(1,1)$
Step n		

Example:

	$-1,0$			
$0,-1$	0,0	0,1		
	1,0			

3) Decomposition into Quadrangulated Patches

3.1) The quads are arranged into "rectilinear polygons"

Each quad is labeled with a position using neighbors

	$(0,0)$	

	$(-1,0)$	
(0,-1)	$(0,0)$	$(0,1)$
	$(1,0)$	

$(-1,-1)$	$(-1,0)$	$(-1,1)$
$(0,-1)$	$(0,0)$	$(0,1)$
$(1,-1)$	$(1,0)$	$(1,1)$
Step n		

Example:

3) Decomposition into Quadrangulated Patches

3.1) The quads are arranged into "rectilinear polygons"

Each quad is labeled with a position using neighbors

	$(0,0)$	

	$(-1,0)$	
(0,-1)	$(0,0)$	$(0,1)$
	$(1,0)$	

$(-1,-1)$	$(-1,0)$	$(-1,1)$
$(0,-1)$	$(0,0)$	$(0,1)$
$(1,-1)$	$(1,0)$	$(1,1)$
Step n		

Example:

$-1,-1$	$-1,0$			
$0,-1$	0,0	0,1	0,2	0,3
$1,-1$	1,0	1,1	1,2	
	2,0	2,1		
	3,0			

3) Decomposition into Quadrangulated Patches

3.1) The quads are arranged into "rectilinear polygons"

Each quad is labeled with a position using neighbors

	$(0,0)$	

	$(-1,0)$	
(0,-1)	$(0,0)$	$(0,1)$
	$(1,0)$	

$(-1,-1)$	$(-1,0)$	$(-1,1)$
$(0,-1)$	$(0,0)$	$(0,1)$
$(1,-1)$	$(1,0)$	$(1,1)$
$\operatorname{Step} n$		

Example:

-1,-1	-1,0			
0,-1	0,0	0,1	0,2	0,3
1,-1	1,0	1,1	1,2	1,3
	2,0	2,1	2,2	
	3,0	3,1		

3) Decomposition into Quadrangulated Patches

3.1) The quads are arranged into "rectilinear polygons"

Each quad is labeled with a position using neighbors

	$(0,0)$	

	$(-1,0)$	
(0,-1)	$(0,0)$	$(0,1)$
	$(1,0)$	

$(-1,-1)$	$(-1,0)$	$(-1,1)$
$(0,-1)$	$(0,0)$	$(0,1)$
$(1,-1)$	$(1,0)$	$(1,1)$
$\operatorname{Step} n$		

Example:

-1,-1	-1,0			
0,-1	0,0	0,1	0,2	0,3
1,-1	1,0	1,1	1,2	1,3
	2,0	2,1	2,2	2,3
	3,0	3,1		

3) Decomposition into Quadrangulated Patches

Problems:

Decomposition into rectilinear polygons \Rightarrow

3) Decomposition into Quadrangulated Patches

Problems:

Decomposition into rectilinear polygons \Rightarrow

Rectilinear polygons constituted by only one quad are not kept.

3) Decomposition into Quadrangulated Patches

3.2) The rectilinear polygons are decomposed into patches: \Rightarrow same number of rows for each column.

3) Decomposition into Quadrangulated Patches

3.2) The rectilinear polygons are decomposed into patches: \Rightarrow same number of rows for each column.

Iterative computation of the patches:

1	3	5	8
		6	9

3) Decomposition into Quadrangulated Patches

3.2) The rectilinear polygons are decomposed into patches: \Rightarrow same number of rows for each column.

Iterative computation of the patches:

3) Decomposition into Quadrangulated Patches

3.2) The rectilinear polygons are decomposed into patches: \Rightarrow same number of rows for each column.

Iterative computation of the patches:

3) Decomposition into Quadrangulated Patches

3.2) The rectilinear polygons are decomposed into patches:
\Rightarrow same number of rows for each column.
Iterative computation of the patches:

Final result:

First Results

Stanford Bunny mesh: 69,451 triangles.

First Results

Stanford Bunny mesh: 69,451 triangles.

$Q_{\text {max }}$	$\phi_{\text {min }}$	\# patches	Covering	Time
$\frac{\pi}{2}$	$\frac{5 \pi}{6}$	1,932	89.98%	4 min

Threshold Variations

Smurf mesh: 64,320 triangles.

Threshold Variations

Smurf mesh: 64,320 triangles.

$Q_{\max }$	$\phi_{\min }$	\# patches	Covering	Time
$\frac{\pi}{2}$	$\frac{5 \pi}{6}$	931	91.39%	2 min

Threshold Variations

Smurf mesh: 64,320 triangles.

$Q_{\text {max }}$	$\phi_{\text {min }}$	\# patches	Covering	Time
$\frac{\pi}{2}$	$\frac{5 \pi}{6}$	931	91.39%	2 min
$\pi \nearrow$	$\frac{5 \pi}{6}$	$519 \searrow$	$98.52 \% \nearrow$	4 min

Threshold Variations

Smurf mesh: 64,320 triangles.

$Q_{\max }$	$\phi_{\min }$	\# patches	Covering	Time
$\frac{\pi}{2}$	$\frac{5 \pi}{6}$	931	91.39%	2 min
$\pi \nearrow$	$\frac{5 \pi}{6}$	$519 \searrow$	$98.52 \% \nearrow$	4 min
$2 \pi \nearrow$	$2 \pi \nearrow$	$502 \searrow$	$98.56 \% \nearrow$	5 min 30 sec

CAD Objects

$$
Q_{\max }=\frac{\pi}{2} / \phi_{\text {min }}=\frac{5 \pi}{6}
$$

CAD Objects

$$
Q_{\max }=\frac{\pi}{2} / \phi_{\min }=\frac{5 \pi}{6}
$$

Conclusion

Our method:

- decomposes a triangular mesh into quadrangulated patches,
- has the particularity to use only the vertices and the edges of the triangular mesh,
- is implemented in the C4W framework.

Future Work

- Define other quality coefficients,
- Improve the quad propagation to minimize the number of isolated triangles,
- Optimize the rectilinear polygon search,

易 Soltan et al.
Minimum Dissection of a Rectilinear Polygon with Arbitrary Holes into Rectangles
Discrete and Computational Geometry
 9(1):57-59 1993

- Use feature lines to guide the patch boundaries.

圊 Lavoué et al.
A new CAD mesh segmentation method, based on curvature tensor analysis
Computer-Aided Design 37(10):975-987 2005

Thanks for your attention

QUESTIONS?

Site: www.lirmm.fr//beniere
Mail: roseline.beniere@lirmm.fr C4W site: www.c4w.com

Roseline Bénière, G. Subsol, G. Gesquière, F. Le Breton and W. Puech,
Decomposition of a 3D triangular mesh into quadrangulated patches, GRAPP, Angers, 2010

