Presentation of the Decomposition Method

Experimental Results

Conclusion and Future Work

Decomposition of a 3D triangular mesh into quadrangulated patches

Roseline Bénière

G. Subsol, G. Gesquière, F. Le Breton and W. Puech

LIRMM, Montpellier, France C4W, Montpellier, France LSIS, Arles, France

May 21st GRAPP 2010

Introduction ●○○○○○	Presentation of the Decomposition Method	Experimental Results	Conclusion and Future Work
Objecti	ve		

Introduction • • • • • • • • • • • • • • • • • • •		Experimental ResultsConclusion and Futu000000	
Objectiv	ve		

A patch:

- is constituted of quads
- has a rectangular grid structure

Introduction ••••••	Presentation of the Decomposition Method	Experimental Results	Conclusion and Future Work
Objectiv	ve		

A patch:

- is constituted of quads
- has a rectangular grid structure

Introduction ●○○○○○	Presentation of the Decomposition Method	Experimental Results	Conclusion and Future Work
Objectiv	/e		

A patch:

- is constituted of quads
- has a rectangular grid structure

Introduction ○●○○○○	Presentation of the Decomposition Method	Experimental Results	Conclusion and Future Work
Motivat	ion		

Patches can be used for:

- interpolating or approximating a surface by a continuous representation,
- making reverse engineering to recognize the grid of the control points,
- compressing 3D mesh geometry without describing the topology,
- applying subdivision schemes,
- doing numerical simulation based on finite elements.

Introduction ○○●○○○	Introduction Presentation of the Decomposition Method		Conclusion and Future Work
Constra	aints		

Introduction Presentation of the Decomposition Method		Experimental Results Conclusion and Futur 000 000	
Constra	aints		

- the vertices must be preserved,
- the edges are derived from the original triangular mesh.

Introduction	Presentation of the Decomposition Method	Experimental Results	Conclusion and Future Work
Constra	aints		

- the vertices must be preserved,
- the edges are derived from the original triangular mesh.

To create patches \Rightarrow last constraint:

Introduction	Presentation of the Decomposition Method	Experimental Results	Conclusion and Future Work
Constra	aints		

- the vertices must be preserved,
- the edges are derived from the original triangular mesh.

To create patches \Rightarrow last constraint:

 the quadrangulated meshes are decomposed into quad rectangular grids.

Conclusion and Future Work

State of the art: Triangular to quadrangular mesh

Remeshing algorithms

- 🔋 Huang *et al*.
- ٩

Spectral quadrangulation with orientation and alignment control

ACM trans. Graph. 27(5):1-9 2008

Advancing front algorithms

- Owen et al.
- Advancing front quadrilateral meshing using triangle transformations.

7th International Meshing Roundtable:409-428 1998.

Merging algorithms

- Borouchaki and Frey.
- •
- Adaptive Triangular-Quadrilateral Mesh Generation.

International Journal for Numerical Methods in Engineering 1998.

Conclusion and Future Work

State of the art: Triangular to quadrangular mesh

Remeshing algorithms

- 🔋 Huang *et al*.
- ٩

Spectral quadrangulation with orientation and alignment control

ACM trans. Graph. 27(5):1-9 2008

Advancing front algorithms

- Owen et al.
- Advancing front quadrilateral meshing using triangle transformations.

7th International Meshing Roundtable:409-428 1998.

Merging algorithms

- Borouchaki and Frey.
- ٥
- Adaptive Triangular-Quadrilateral Mesh Generation.

International Journal for Numerical Methods in Engineering 1998.

Experimental Results

Conclusion and Future Work

State of the art: Quadrangular meshes to patches

Decomposition into patches

Eppstein et al.

 Motorcycle graphs: Canonical mesh partitioning.

Comput. Graph. forum, 27(5):1477-1486 2008.

Introduction
000000

Experimental Results

Conclusion and Future Work

Outline

Presentation of the Decomposition Method

- Computation of a Quality Coefficient
- Construction of Quadrangulated Areas
- Decomposition into Quadrangulated Patches
- 2 Experimental Results
 - First Results
 - Threshold Variations
 - CAD Objects
- 3 Conclusion and Future Work
 - Conclusion
 - Future Work

Introd	duc	tio	

Conclusion and Future Work

Our method

3 steps:

- Computation of a quality coefficient for each pair of adjacent triangles
- Construction of quadrangulated areas, using the quality coefficients
- Oecomposition into quadrangulated patches from quadrangulated areas

Introduction	

Experimental Results

Conclusion and Future Work

1) Computation of a Quality Coefficient

- dihedral angle (ϕ)
- angles between connected edges (α_i)

Introduction	

Experimental Results

Conclusion and Future Work

1) Computation of a Quality Coefficient

- dihedral angle (ϕ)
- angles between connected edges (α_i)

Introduction	

Experimental Results

Conclusion and Future Work

1) Computation of a Quality Coefficient

- dihedral angle (ϕ)
- angles between connected edges (α_i)

Introduction	

Experimental Results

Conclusion and Future Work

1) Computation of a Quality Coefficient

- dihedral angle (ϕ)
- angles between connected edges (α_i)

Introduction	

Experimental Results

Conclusion and Future Work

1) Computation of a Quality Coefficient

- dihedral angle (ϕ)
- angles between connected edges (α_i)

Introduction

Presentation of the Decomposition Method $\circ \bullet \circ \circ \circ$

Experimental Results

Conclusion and Future Work

2) Construction of Quadrangulated Areas

Iterative construction of quadrangulated areas:

Start with the best Q.

Presentation of the Decomposition Method $\circ \bullet \circ \circ \circ$

Experimental Results

Conclusion and Future Work

2) Construction of Quadrangulated Areas

Iterative construction of quadrangulated areas:

Find the quad with the best Q in the neighborhood

Presentation of the Decomposition Method $\circ \bullet \circ \circ \circ$

Experimental Results

Conclusion and Future Work

2) Construction of Quadrangulated Areas

Iterative construction of quadrangulated areas:

No new quad can be created.

Presentation of the Decomposition Method

Experimental Results

Conclusion and Future Work

2) Construction of Quadrangulated Areas

Iterative construction of quadrangulated areas:

Left triangles:

- isolated triangles
- triangles of quads with $Q > Q_{max}$

Presentation of the Decomposition Method

Experimental Results

Conclusion and Future Work

3) Decomposition into Quadrangulated Patches

3.1) The quads are arranged into "rectilinear polygons"

Conclusion and Future Work

3) Decomposition into Quadrangulated Patches

3.1) The quads are arranged into "rectilinear polygons"

Each quad is labeled with a position using neighbors

Conclusion and Future Work

3) Decomposition into Quadrangulated Patches

3.1) The quads are arranged into "rectilinear polygons"

Each quad is labeled with a position using neighbors

Conclusion and Future Work

3) Decomposition into Quadrangulated Patches

3.1) The quads are arranged into "rectilinear polygons"

Each quad is labeled with a position using neighbors

Conclusion and Future Work

3) Decomposition into Quadrangulated Patches

3.1) The quads are arranged into "rectilinear polygons"

Each quad is labeled with a position using neighbors

Conclusion and Future Work

3) Decomposition into Quadrangulated Patches

3.1) The quads are arranged into "rectilinear polygons"

Each quad is labeled with a position using neighbors

Conclusion and Future Work

3) Decomposition into Quadrangulated Patches

3.1) The quads are arranged into "rectilinear polygons"

Each quad is labeled with a position using neighbors

Conclusion and Future Work

3) Decomposition into Quadrangulated Patches

3.1) The quads are arranged into "rectilinear polygons"

Each quad is labeled with a position using neighbors

Conclusion and Future Work

3) Decomposition into Quadrangulated Patches

3.1) The quads are arranged into "rectilinear polygons"

Each quad is labeled with a position using neighbors

Conclusion and Future Work

3) Decomposition into Quadrangulated Patches

3.1) The quads are arranged into "rectilinear polygons"

Each quad is labeled with a position using neighbors

Presentation of the Decomposition Method ○○○●○ Experimental Results

Conclusion and Future Work

3) Decomposition into Quadrangulated Patches

Presentation of the Decomposition Method ○○○●○ Experimental Results

Conclusion and Future Work

3) Decomposition into Quadrangulated Patches

Presentation of the Decomposition Method ○○○●○ Experimental Results

Conclusion and Future Work

3) Decomposition into Quadrangulated Patches

Presentation of the Decomposition Method ○○○●○ Experimental Results

Conclusion and Future Work

3) Decomposition into Quadrangulated Patches

Presentation of the Decomposition Method ○○○●○ Experimental Results

Conclusion and Future Work

3) Decomposition into Quadrangulated Patches

Presentation of the Decomposition Method ○○○●○ Experimental Results

Conclusion and Future Work

3) Decomposition into Quadrangulated Patches

Presentation of the Decomposition Method $\circ \circ \circ \circ \circ$

Experimental Results

Conclusion and Future Work

3) Decomposition into Quadrangulated Patches

Presentation of the Decomposition Method $\circ \circ \circ \circ \circ$

Experimental Results

Conclusion and Future Work

3) Decomposition into Quadrangulated Patches

Problems:

Rectilinear polygons constituted by only one quad are not kept.

Introduction	

Conclusion and Future Work

3) Decomposition into Quadrangulated Patches

3.2) The rectilinear polygons are decomposed into patches:

 \Rightarrow same number of rows for each column.

Introduction

Conclusion and Future Work

3) Decomposition into Quadrangulated Patches

3.2) The rectilinear polygons are decomposed into patches: \Rightarrow same number of rows for each column.

1	3	5	8
		6	9

Introduction

Conclusion and Future Work

3) Decomposition into Quadrangulated Patches

3.2) The rectilinear polygons are decomposed into patches: \Rightarrow same number of rows for each column.

Introduction

Conclusion and Future Work

3) Decomposition into Quadrangulated Patches

3.2) The rectilinear polygons are decomposed into patches: \Rightarrow same number of rows for each column.

Conclusion and Future Work

3) Decomposition into Quadrangulated Patches

3.2) The rectilinear polygons are decomposed into patches: \Rightarrow same number of rows for each column.

Introduction	Presentation of the Decomposition Method	Experimental Results ●○○	Conclusion and Future Work
First Re	esults		

Stanford Bunny mesh: 69,451 triangles.

Introduction

Experimental Results

Conclusion and Future Work

First Results

Stanford Bunny mesh: 69,451 triangles.

Q _{max}	$\phi_{\it min}$	# patches	Covering	Time
$\frac{\pi}{2}$	$\frac{5\pi}{6}$	1,932	89.98%	4 min

Presentation of the Decomposition Method

Experimental Results

Conclusion and Future Work

Threshold Variations

Smurf mesh: 64,320 triangles.

Presentation of the Decomposition Method

Experimental Results

Conclusion and Future Work

Threshold Variations

Smurf mesh: 64,320 triangles.

Q _{max}	$\phi_{\it min}$	# patches	Covering	Time
$\frac{\pi}{2}$	$\frac{5\pi}{6}$	931	91.39%	2 min

Presentation of the Decomposition Method

Experimental Results

Conclusion and Future Work

Threshold Variations

Smurf mesh: 64,320 triangles.

Q _{max}	$\phi_{\it min}$	# patches	Covering	Time
$\frac{\pi}{2}$	$\frac{5\pi}{6}$	931	91.39%	2 min
$\pi \nearrow$	$\frac{5\pi}{6}$	519 📐	98.52% /	4 min

Presentation of the Decomposition Method

Experimental Results

Conclusion and Future Work

Threshold Variations

Smurf mesh: 64,320 triangles.

Q _{max}	$\phi_{\it min}$	# patches	Covering	Time
$\frac{\pi}{2}$	$\frac{5\pi}{6}$	931	91.39%	2 min
$\pi \nearrow$	$\frac{5\pi}{6}$	519 📐	98.52% /	4 min
2π /	2π /	502 📐	98.56% /	5 min 30 sec

Introduc	tion	
000000		

Experimental Results

000

Conclusion and Future Work

CAD Objects

$$Q_{max} = rac{\pi}{2} / \phi_{min} = rac{5\pi}{6}$$

Introdu	lction

Experimental Results

000

Conclusion and Future Work

CAD Objects

$${\cal Q}_{max}=rac{\pi}{2}$$
 / $\phi_{min}=rac{5\pi}{6}$

Introduction	Presentation of the Decomposition Method

Conclusion and Future Work ●○○

Conclusion

Our method:

- decomposes a triangular mesh into quadrangulated patches,
- has the particularity to use only the vertices and the edges of the triangular mesh,
- is implemented in the C4W framework.

Introduction	Presentation of the Decomposition Method	Experimental Results	Conclusion and Future Work ○●○
Future	Work		

- Define other quality coefficients,
- Improve the quad propagation to minimize the number of isolated triangles,
- Optimize the rectilinear polygon search,
 - Soltan et al.

Minimum Dissection of a Rectilinear Polygon with Arbitrary Holes into Rectangles

Discrete and Computational Geometry 9(1):57-59 1993

- Use feature lines to guide the patch boundaries.
 - Lavoué et al.

A new CAD mesh segmentation method, based on curvature tensor analysis

Computer-Aided Design 37(10):975-987 2005

Presentation of the Decomposition Method

Experimental Results

Conclusion and Future Work

Thanks for your attention

QUESTIONS?

Site: www.lirmm.fr/~beniere Mail: roseline.beniere@lirmm.fr C4W site: www.c4w.com

Roseline Bénière, G. Subsol, G. Gesquière, F. Le Breton and W. Puech, Decomposition of a 3D triangular mesh into quadrangulated patches, GRAPP, Angers, 2010

